Affiliation:
1. Syracuse University
2. Georgia Institute of Technology
Abstract
This paper surveys the recent work in the intersection of differential privacy (DP) and fairness. It focuses on surveying the work observing that DP systems may exacerbate bias and disparate impacts for different groups of individuals. The survey reviews the conditions under which privacy and fairness may be aligned or contrasting goals, analyzes how and why DP exacerbates bias and unfairness in decision problems and learning tasks, and reviews the available solutions to mitigate the fairness issues arising in DP systems. The survey provides a unified understanding of the main challenges and potential risks arising when deploying privacy-preserving machine learning or decisions making tasks under a fairness lens.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献