Few-shot Human Motion Prediction via Learning Novel Motion Dynamics

Author:

Zang Chuanqi12,Pei Mingtao1,Kong Yu2

Affiliation:

1. Beijing Laboratory of Intelligent Information Technology, Beijing Institute of Technology, China

2. Golisano College of Computing and Information Sciences, Rochester Institute of Technology, USA

Abstract

Human motion prediction is a task where we anticipate future motion based on past observation. Previous approaches rely on the access to large datasets of skeleton data, and thus are difficult to be generalized to novel motion dynamics with limited training data. In our work, we propose a novel approach named Motion Prediction Network (MoPredNet) for few-short human motion prediction. MoPredNet can be adapted to predicting new motion dynamics using limited data, and it elegantly captures long-term dependency in motion dynamics. Specifically, MoPredNet dynamically selects the most informative poses in the streaming motion data as masked poses. In addition, MoPredNet improves its encoding capability of motion dynamics by adaptively learning spatio-temporal structure from the observed poses and masked poses. We also propose to adapt MoPredNet to novel motion dynamics based on accumulated motion experiences and limited novel motion dynamics data. Experimental results show that our method achieves better performance over state-of-the-art methods in motion prediction.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behavioral Intention Prediction in Driving Scenes: A Survey;IEEE Transactions on Intelligent Transportation Systems;2024-08

2. MTAN: Multi-degree Tail-aware Attention Network for human motion prediction;Internet of Things;2024-04

3. Multi-Scale Spatio-Temporal Aggregation Network for Human Motion Prediction;2023 18th International Conference on Intelligent Systems and Knowledge Engineering (ISKE);2023-11-17

4. A multilayer human motion prediction perceptron by aggregating repetitive motion;Machine Vision and Applications;2023-09-13

5. Spatiotemporal Consistency Learning From Momentum Cues for Human Motion Prediction;IEEE Transactions on Circuits and Systems for Video Technology;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3