Unsupervised Representation Learning by Predicting Random Distances

Author:

Wang Hu1,Pang Guansong1,Shen Chunhua1,Ma Congbo1

Affiliation:

1. The University of Adelaide

Abstract

Deep neural networks have gained great success in a broad range of tasks due to its remarkable capability to learn semantically rich features from high-dimensional data. However, they often require large-scale labelled data to successfully learn such features, which significantly hinders their adaption in unsupervised learning tasks, such as anomaly detection and clustering, and limits their applications to critical domains where obtaining massive labelled data is prohibitively expensive. To enable unsupervised learning on those domains, in this work we propose to learn features without using any labelled data by training neural networks to predict data distances in a randomly projected space. Random mapping is a theoretically proven approach to obtain approximately preserved distances. To well predict these distances, the representation learner is optimised to learn genuine class structures that are implicitly embedded in the randomly projected space. Empirical results on 19 real-world datasets show that our learned representations substantially outperform a few state-of-the-art methods for both anomaly detection and clustering tasks. Code is available at: \url{https://git.io/RDP}

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3