Network Schema Preserving Heterogeneous Information Network Embedding

Author:

Zhao Jianan1,Wang Xiao1,Shi Chuan1,Liu Zekuan1,Ye Yanfang2

Affiliation:

1. Beijing University of Posts and Telecommunications

2. Case Western Reserve University

Abstract

As heterogeneous networks have become increasingly ubiquitous, Heterogeneous Information Network (HIN) embedding, aiming to project nodes into a low-dimensional space while preserving the heterogeneous structure, has drawn increasing attention in recent years. Many of the existing HIN embedding methods adopt meta-path guided random walk to retain both the semantics and structural correlations between different types of nodes. However, the selection of meta-paths is still an open problem, which either depends on domain knowledge or is learned from label information. As a uniform blueprint of HIN, the network schema comprehensively embraces the high-order structure and contains rich semantics. In this paper, we make the first attempt to study network schema preserving HIN embedding, and propose a novel model named NSHE. In NSHE, a network schema sampling method is first proposed to generate sub-graphs (i.e., schema instances), and then multi-task learning task is built to preserve the heterogeneous structure of each schema instance. Besides preserving pairwise structure information, NSHE is able to retain high-order structure (i.e., network schema). Extensive experiments on three real-world datasets demonstrate that our proposed model NSHE significantly outperforms the state-of-the-art methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Restage: Relation Structure-Aware Hierarchical Heterogeneous Graph Embedding;Tsinghua Science and Technology;2025-02

2. Heterogeneous Graph Contrastive Learning With Meta-Path Contexts and Adaptively Weighted Negative Samples;IEEE Transactions on Knowledge and Data Engineering;2024-10

3. Reserving-Masking-Reconstruction Model for Self-Supervised Heterogeneous Graph Representation;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. Unsupervised Heterogeneous Graph Rewriting Attack via Node Clustering;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. Semi-supervised heterogeneous graph contrastive learning with label-guided;Applied Intelligence;2024-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3