Unsupervised Embedding Enhancements of Knowledge Graphs using Textual Associations

Author:

Veira Neil1,Keng Brian2,Padmanabhan Kanchana2,Veneris Andreas1

Affiliation:

1. Department of Electrical and Computer Engineering, University of Toronto

2. Data Science, Rubikloud Technologies Inc.

Abstract

Knowledge graph embeddings are instrumental for representing and learning from multi-relational data, with recent embedding models showing high effectiveness for inferring new facts from existing databases. However, such precisely structured data is usually limited in quantity and in scope. Therefore, to fully optimize the embeddings it is important to also consider more widely available sources of information such as text. This paper describes an unsupervised approach to incorporate textual information by augmenting entity embeddings with embeddings of associated words. The approach does not modify the optimization objective for the knowledge graph embedding, which allows it to be integrated with existing embedding models. Two distinct forms of textual data are considered, with different embedding enhancements proposed for each case. In the first case, each entity has an associated text document that describes it. In the second case, a text document is not available, and instead entities occur as words or phrases in an unstructured corpus of text fragments. Experiments show that both methods can offer improvement on the link prediction task when applied to many different knowledge graph embedding models.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3