Adversarial Examples for Graph Data: Deep Insights into Attack and Defense

Author:

Wu Huijun12,Wang Chen2,Tyshetskiy Yuriy2,Docherty Andrew2,Lu Kai3,Zhu Liming12

Affiliation:

1. University of New South Wales, Australia

2. Data61, CSIRO

3. National University of Defense Technology, China

Abstract

Graph deep learning models, such as graph convolutional networks (GCN) achieve state-of-the-art performance for tasks on graph data. However, similar to other deep learning models, graph deep learning models are susceptible to adversarial attacks. However, compared with non-graph data the discrete nature of the graph connections and features provide unique challenges and opportunities for adversarial attacks and defenses. In this paper, we propose techniques for both an adversarial attack and a defense against adversarial attacks. Firstly, we show that the problem of discrete graph connections and the discrete features of common datasets can be handled by using the integrated gradient technique that accurately determines the effect of changing selected features or edges while still benefiting from parallel computations. In addition, we show that an adversarially manipulated graph using a targeted attack statistically differs from un-manipulated graphs. Based on this observation, we propose a defense approach which can detect and recover a potential adversarial perturbation. Our experiments on a number of datasets show the effectiveness of the proposed techniques.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Defending adversarial attacks in Graph Neural Networks via tensor enhancement;Pattern Recognition;2025-02

2. Black-Box Adversarial Attack on Graph Neural Networks With Node Voting Mechanism;IEEE Transactions on Knowledge and Data Engineering;2024-10

3. Graph augmentation against structural poisoning attacks via structure and attribute reconciliation;International Journal of Machine Learning and Cybernetics;2024-09-11

4. TrustGuard: GNN-Based Robust and Explainable Trust Evaluation With Dynamicity Support;IEEE Transactions on Dependable and Secure Computing;2024-09

5. A New Strategy of Graph Structure Attack: Multi-View Perturbation Candidate Edge Learning;IEEE Transactions on Network Science and Engineering;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3