Fast Network Embedding Enhancement via High Order Proximity Approximation

Author:

Yang Cheng1,Sun Maosong12,Liu Zhiyuan12,Tu Cunchao12

Affiliation:

1. Department of Computer Science and Technology, Tsinghua University, Beijing, China

2. Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, China

Abstract

Many Network Representation Learning (NRL) methods have been proposed to learn vector representations for vertices in a network recently. In this paper, we summarize most existing NRL methods into a unified two-step framework, including proximity matrix construction and dimension reduction. We focus on the analysis of proximity matrix construction step and conclude that an NRL method can be improved by exploring higher order proximities when building the proximity matrix. We propose Network Embedding Update (NEU) algorithm which implicitly approximates higher order proximities with theoretical approximation bound and can be applied on any NRL methods to enhance their performances. We conduct experiments on multi-label classification and link prediction tasks. Experimental results show that NEU can make a consistent and significant improvement over a number of NRL methods with almost negligible running time on all three publicly available datasets.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the complexities of the fine structure of interest rates: a Wasserstein barycenter learning approach;Neural Computing and Applications;2024-08-03

2. Multi-channel high-order network representation learning research;Frontiers in Neurorobotics;2024-02-29

3. Adaptive Graph Convolution Methods for Attributed Graph Clustering;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

4. High-order multi-view clustering for generic data;Information Fusion;2023-12

5. Multi-order attribute network representation learning via constructing hierarchical graphs;International Journal of Machine Learning and Cybernetics;2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3