Predict+Optimise with Ranking Objectives: Exhaustively Learning Linear Functions

Author:

Demirovic Emir1,Stuckey Peter J.23,Bailey James1,Chan Jeffrey4,Leckie Christopher1,Ramamohanarao Kotagiri1,Guns Tias5

Affiliation:

1. University of Melbourne, Australia

2. Monash University, Australia

3. Data61, Australia

4. RMIT University, Australia

5. Vrije Universiteit Brussel, Belgium

Abstract

We study the predict+optimise problem, where machine learning and combinatorial optimisation must interact to achieve a common goal. These problems are important when optimisation needs to be performed on input parameters that are not fully observed but must instead be estimated using machine learning. Our contributions are two-fold: 1) we provide theoretical insight into the properties and computational complexity of predict+optimise problems in general, and 2) develop a novel framework that, in contrast to related work, guarantees to compute the optimal parameters for a linear learning function given any ranking optimisation problem. We illustrate the applicability of our framework for the particular case of the unit-weighted knapsack predict+optimise problem and evaluate on benchmarks from the literature.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electricity Price Forecasting based on Order Books: a differentiable optimization approach;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09

2. Branch & Learn with Post-hoc Correction for Predict+Optimize with Unknown Parameters in Constraints;Integration of Constraint Programming, Artificial Intelligence, and Operations Research;2023

3. End-to-End Learning for Prediction and Optimization with Gradient Boosting;Machine Learning and Knowledge Discovery in Databases;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3