Towards Better Representation Learning for Personalized News Recommendation: a Multi-Channel Deep Fusion Approach

Author:

Lian Jianxun1,Zhang Fuzheng2,Xie Xing2,Sun Guangzhong1

Affiliation:

1. University of Science and Technology of China, Hefei, China

2. Microsoft Research, Beijing, China

Abstract

Millions of news articles emerge every day. How to provide personalized news recommendations has become a critical task for service providers. In the past few decades, latent factor models has been widely used for building recommender systems (RSs). With the remarkable success of deep learning techniques especially in visual computing and natural language understanding, more and more researchers have been trying to leverage deep neural networks to learn latent representations for advanced RSs. Following mainstream deep learning-based RSs, we propose a novel deep fusion model (DFM), which aims to improve the representation learning abilities in deep RSs and can be used for both candidate retrieval and item re-ranking. There are two key components in our DFM approach, namely an inception module and an attention mechanism. The inception module improves the plain multi-layer network via leveraging of various levels of interaction simultaneously, while the attention mechanism merges latent representations learnt from different channels in a customized fashion. We conduct extensive experiments on a commercial news reading dataset, and the results demonstrate that the proposed DFM is superior to several state-of-the-art models.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fairness Group Recommendation Algorithm Based On User Activity;International Journal of Computational Intelligence Systems;2024-08-05

2. A News Recommendation Method for User Privacy Protection;International Journal of Computer Science and Information Technology;2024-05-28

3. Modeling User Viewing Flow using Large Language Models for Article Recommendation;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

4. Prompt-Based Generative News Recommendation (PGNR): Accuracy and Controllability;Lecture Notes in Computer Science;2024

5. Exploring the Landscape of Hybrid Recommendation Systems in E-Commerce: A Systematic Literature Review;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3