Contextual Outlier Interpretation

Author:

Liu Ninghao1,Shin Donghwa1,Hu Xia12

Affiliation:

1. Department of Computer Science and Engineering, Texas A&M university

2. Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station

Abstract

While outlier detection has been intensively studied in many applications, interpretation is becoming increasingly important to help people trust and evaluate the developed detection models through providing intrinsic reasons why the given outliers are identified. It is a nontrivial task for interpreting the abnormality of outliers due to the distinct characteristics of different detection models, complicated structures of data in certain applications, and imbalanced distribution of outliers and normal instances. In addition, contexts where outliers locate, as well as the relation between outliers and the contexts, are usually overlooked in existing interpretation frameworks. To tackle the issues, in this paper, we propose a Contextual Outlier INterpretation (COIN) framework to explain the abnormality of outliers spotted by detectors. The interpretability of an outlier is achieved through three aspects, i.e., outlierness score, attributes that contribute to the abnormality, and contextual description of its neighborhoods. Experimental results on various types of datasets demonstrate the flexibility and effectiveness of the proposed framework.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discovering outlying attributes of outliers in data streams;Data & Knowledge Engineering;2024-11

2. Outlier Interpretation Using Regularized Auto Encoders and Genetic Algorithm;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

3. Finding Component Relationships: A Deep-Learning-Based Anomaly Detection Interpreter;IEEE Transactions on Computational Social Systems;2024-06

4. Explainability, Quantified: Benchmarking XAI Techniques;Communications in Computer and Information Science;2024

5. Visualizing Outlier Explanations for Mixed-Type Data;Progress in IS;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3