Neural News Recommendation with Attentive Multi-View Learning

Author:

Wu Chuhan1,Wu Fangzhao2,An Mingxiao3,Huang Jianqiang4,Huang Yongfeng1,Xie Xing2

Affiliation:

1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

2. Microsoft Research Asia, Beijing 100080, China

3. University of Science and Technology of China, Hefei 230026, China

4. Peking University, Beijing 100871, China

Abstract

Personalized news recommendation is very important for online news platforms to help users find interested news and improve user experience. News and user representation learning is critical for news recommendation. Existing news recommendation methods usually learn these representations based on single news information, e.g., title, which may be insufficient. In this paper we propose a neural news recommendation approach which can learn informative representations of users and news by exploiting different kinds of news information. The core of our approach is a news encoder and a user encoder. In the news encoder we propose an attentive multi-view learning model to learn unified news representations from titles, bodies and topic categories by regarding them as different views of news. In addition, we apply both word-level and view-level attention mechanism to news encoder to select important words and views for learning informative news representations. In the user encoder we learn the representations of users based on their browsed news and apply attention mechanism to select informative news for user representation learning. Extensive experiments on a real-world dataset show our approach can effectively improve the performance of news recommendation.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3