Efficient Neural Network Verification via Layer-based Semidefinite Relaxations and Linear Cuts

Author:

Batten Ben1,Kouvaros Panagiotis1,Lomuscio Alessio1,Zheng Yang1

Affiliation:

1. Department of Computing, Imperial College London, UK

Abstract

We introduce an efficient and tight layer-based semidefinite relaxation for verifying local robustness of neural networks. The improved tightness is the result of the combination between semidefinite relaxations and linear cuts. We obtain a computationally efficient method by decomposing the semidefinite formulation into layerwise constraints. By leveraging on chordal graph decompositions, we show that the formulation here presented is provably tighter than current approaches. Experiments on a set of benchmark networks show that the approach here proposed enables the verification of more instances compared to other relaxation methods. The results also demonstrate that the SDP relaxation here proposed is one order of magnitude faster than previous SDP methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chordal sparsity for SDP-based neural network verification;Automatica;2024-03

2. VeRe: Verification Guided Synthesis for Repairing Deep Neural Networks;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-02-06

3. On the Verification of Embeddings with Hybrid Markov Logic;2023 IEEE International Conference on Data Mining (ICDM);2023-12-01

4. Expediting Neural Network Verification via Network Reduction;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

5. Verification-friendly Networks: the Case for Parametric ReLUs;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3