Rumor Detection on Social Media with Graph Structured Adversarial Learning

Author:

Yang Xiaoyu1,Lyu Yuefei1,Tian Tian1,Liu Yifei1,Liu Yudong1,Zhang Xi1

Affiliation:

1. Beijing University of Posts and Telecommunications

Abstract

The wide spread of rumors on social media has caused tremendous effects in both the online and offline world. In addition to text information, recent detection methods began to exploit the graph structure in the propagation network. However, without a rigorous design, rumors may evade such graph models using various camouflage strategies by perturbing the structured data. Our focus in this work is to develop a robust graph-based detector to identify rumors on social media from an adversarial perspective. We first build a heterogeneous information network to model the rich information among users, posts, and user comments for detection. We then propose a graph adversarial learning framework, where the attacker tries to dynamically add intentional perturbations on the graph structure to fool the detector, while the detector would learn more distinctive structure features to resist such perturbations. In this way, our model would be enhanced in both robustness and generalization. Experiments on real-world datasets demonstrate that our model achieves better results than the state-of-the-art methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3