Affiliation:
1. Beijing University of Posts and Telecommunications
Abstract
The wide spread of rumors on social media has caused tremendous effects in both the online and offline world. In addition to text information, recent detection methods began to exploit the graph structure in the propagation network. However, without a rigorous design, rumors may evade such graph models using various camouflage strategies by perturbing the structured data. Our focus in this work is to develop a robust graph-based detector to identify rumors on social media from an adversarial perspective. We first build a heterogeneous information network to model the rich information among users, posts, and user comments for detection. We then propose a graph adversarial learning framework, where the attacker tries to dynamically add intentional perturbations on the graph structure to fool the detector, while the detector would learn more distinctive structure features to resist such perturbations. In this way, our model would be enhanced in both robustness and generalization. Experiments on real-world datasets demonstrate that our model achieves better results than the state-of-the-art methods.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献