ViT-P3DE∗: Vision Transformer Based Multi-Camera Instance Association with Pseudo 3D Position Embeddings

Author:

Seo Minseok12,Lee Hyuk-Jae12,Nguyen Xuan Truong12

Affiliation:

1. Inter-University Semiconductor Research Center (ISRC)

2. Department of Electrical and Computer Engineering, Seoul National University

Abstract

Multi-camera instance association, which identifies identical objects among multiple objects in multi-view images, is challenging due to several harsh constraints. To tackle this problem, most studies have employed CNNs as feature extractors but often fail under such harsh constraints. Inspired by Vision Transformer (ViT), we first develop a pure ViT-based framework for robust feature extraction through self-attention and residual connection. We then propose two novel methods to achieve robust feature learning. First, we introduce learnable pseudo 3D position embeddings (P3DEs) that represent the 3D location of an object in the world coordinate system, which is independent of the harsh constraints. To generate P3DEs, we encode the camera ID and the object's 2D position in the image using embedding tables. We then build a framework that trains P3DEs to represent an object's 3D position in a weakly supervised manner. Second, we also utilize joint patch generation (JPG). During patch generation, JPG considers an object and its surroundings as a single input patch to reinforce the relationship information between two features. Ultimately, experimental results demonstrate that both ViT-P3DE and ViT-P3DE with JPG achieve state-of-the-art performance and significantly outperform existing works, especially when dealing with extremely harsh constraints.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real Post-Training Quantization Framework for Resource-Optimized Multiplier in LLMs;2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS);2024-04-22

2. A Low-Latency and Scalable Vector Engine with Operation Fusion for Transformers;2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS);2024-04-22

3. A Low-Latency and Lightweight FPGA-Based Engine for Softmax and Layer Normalization Acceleration;2023 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia);2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3