Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis

Author:

He Yang1,Yu Ning2,Keuper Margret3,Fritz Mario1

Affiliation:

1. CISPA Helmholtz Center for Information Security

2. University of Maryland and Max Planck Institute for Informatics

3. University of Mannheim

Abstract

The rapid advances in deep generative models over the past years have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes. These advances make assessing the authenticity of visual data increasingly difficult and pose a misinformation threat to the trustworthiness of visual content in general. Although recent work has shown strong detection accuracy of such deepfakes, the success largely relies on identifying frequency artifacts in the generated images, which will not yield a sustainable detection approach as generative models continue evolving and closing the gap to real images. In order to overcome this issue, we propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection. The re-synthesis procedure is flexible, allowing us to incorporate a series of visual tasks - we adopt super-resolution, denoising and colorization as the re-synthesis. We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios involving multiple generators over CelebA-HQ, FFHQ, and LSUN datasets. Source code is available at https://github.com/SSAW14/BeyondtheSpectrum.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of Deepfake and related digital forensics;Journal of Image and Graphics;2024

2. Adaptive Texture and Spectrum Clue Mining for Generalizable Face Forgery Detection;IEEE Transactions on Information Forensics and Security;2024

3. A Dynamic Ensemble Selection of Deepfake Detectors Specialized for Individual Face Parts;Electronics;2023-09-18

4. A comprehensive survey of multimodal fake news detection techniques: advances, challenges, and opportunities;International Journal of Multimedia Information Retrieval;2023-08-23

5. AutoSplice: A Text-prompt Manipulated Image Dataset for Media Forensics;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3