Neural Collective Entity Linking Based on Recurrent Random Walk Network Learning

Author:

Xue Mengge123,Cai Weiming1,Su Jinsong1,Song Linfeng4,Ge Yubin4,Liu Yubao4,Wang Bin5

Affiliation:

1. Xiamen University

2. Institute of Information Engineering, Chinese Academy of Sciences

3. School of Cyber Security, University of Chinese Academy of Sciences

4. Rochester University

5. Xiaomi AI Lab, Xiaomi Inc., Beijing, China

Abstract

Benefiting from the excellent ability of neural networks on learning semantic representations, existing studies for entity linking (EL) have resorted to neural networks to exploit both the local mention-to-entity compatibility and the global interdependence between different EL decisions for target entity disambiguation. However, most neural collective EL methods depend entirely upon neural networks to automatically model the semantic dependencies between different EL decisions, which lack of the guidance from external knowledge. In this paper, we propose a novel end-to-end neural network with recurrent random-walk layers for collective EL, which introduces external knowledge to model the semantic interdependence between different EL decisions. Specifically, we first establish a model based on local context features, and then stack random-walk layers to reinforce the evidence for related EL decisions into high-probability decisions, where the semantic interdependence between candidate entities is mainly induced from an external knowledge base. Finally, a semantic regularizer that preserves the collective EL decisions consistency is incorporated into the conventional objective function, so that the external knowledge base can be fully exploited in collective EL decisions. Experimental results and in-depth analysis on various datasets show that our model achieves better performance than other state-of-the-art models. Our code and data are released at https://github.com/DeepLearnXMU/RRWEL.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ambiguous Entity Oriented Targeted Document Detection;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. MVT: Chinese NER Using Multi-View Transformer;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

3. A Survey of Named Entity Disambiguation in Entity Linking;2023 3rd International Conference on Intelligent Communications and Computing (ICC);2023-11-24

4. Entity Linking Method for Chinese Short Texts with Multiple Embedded Representations;Electronics;2023-06-15

5. Distantly Supervised Entity Linking with Selection Consistency Constraint;Database Systems for Advanced Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3