Simultaneous Representation Learning and Clustering for Incomplete Multi-view Data

Author:

Zhuge Wenzhang1,Hou Chenping1,Liu Xinwang2,Tao Hong1,Yi Dongyun1

Affiliation:

1. College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China

2. School of Computer, National University of Defense Technology, Changsha, China

Abstract

Incomplete multi-view clustering has attracted various attentions from diverse fields. Most existing methods factorize data to learn a unified representation linearly. Their performance may degrade when the relations between the unified representation and data of different views are nonlinear. Moreover, they need post-processing on the unified representations to extract the clustering indicators, which separates the consensus learning and subsequent clustering. To address these issues, in this paper, we propose a Simultaneous Representation Learning and Clustering (SRLC) method. Concretely, SRLC constructs similarity matrices to measure the relations between pair of instances, and learns low-dimensional representations of present instances on each view and a common probability label matrix simultaneously. Thus, the nonlinear information can be reflected by these representations and the clustering results can obtained from label matrix directly. An efficient iterative algorithm with guaranteed convergence is presented for optimization. Experiments on several datasets demonstrate the advantages of the proposed approach.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context-Based Meta-Reinforcement Learning With Bayesian Nonparametric Models;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-10

2. Tensor schatten-p norm guided incomplete multi-view self-representation clustering;Knowledge-Based Systems;2024-06

3. Compound Weakly Supervised Clustering;IEEE Transactions on Image Processing;2024

4. Adaptive Feature Selection With Augmented Attributes;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-08

5. A Survey on Incomplete Multiview Clustering;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3