Dynamic Bayesian Logistic Matrix Factorization for Recommendation with Implicit Feedback

Author:

Liu Yong12,Zhao Lifan1,Liu Guimei1,Lu Xinyan3,Gao Peng3,Li Xiao-Li1,Jin Zhihui3

Affiliation:

1. Institute for Infocomm Research, A*STAR, Singapore

2. Link Analytic Centre, NTUC Link Pte. Ltd., Singapore

3. Tencent Social Ads, China

Abstract

Matrix factorization has been widely adopted for recommendation by learning latent embeddings of users and items from observed user-item interaction data. However, previous methods usually assume the learned embeddings are static or homogeneously evolving with the same diffusion rate. This is not valid in most scenarios, where users’ preferences and item attributes heterogeneously drift over time. To remedy this issue, we have proposed a novel dynamic matrix factorization model, named Dynamic Bayesian Logistic Matrix Factorization (DBLMF), which aims to learn heterogeneous user and item embeddings that are drifting with inconsistent diffusion rates. More specifically, DBLMF extends logistic matrix factorization to model the probability a user would like to interact with an item at a given timestamp, and a diffusion process to connect latent embeddings over time. In addition, an efficient Bayesian inference algorithm has also been proposed to make DBLMF scalable on large datasets. The effectiveness of the proposed method has been demonstrated by extensive experiments on real datasets, compared with the state-of-the-art methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TrajGraph: A Dual-View Graph Transformer Model for Effective Next Location Recommendation;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Fairness-aware recommendation with meta learning;Scientific Reports;2024-05-02

3. MoveFormer: Spatial Graph Periodic Injection Network for Next POI Recommendation;Lecture Notes in Computer Science;2024

4. GLSUR: POI Recommendations Based on Similar Users and Current Geographic Location;2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS);2023-05-12

5. Graph-Flashback Network for Next Location Recommendation;Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2022-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3