Affiliation:
1. Institute for Infocomm Research, A*STAR, Singapore
2. Link Analytic Centre, NTUC Link Pte. Ltd., Singapore
3. Tencent Social Ads, China
Abstract
Matrix factorization has been widely adopted for recommendation by learning latent embeddings of users and items from observed user-item interaction data. However, previous methods usually assume the learned embeddings are static or homogeneously evolving with the same diffusion rate. This is not valid in most scenarios, where users’ preferences and item attributes heterogeneously drift over time. To remedy this issue, we have proposed a novel dynamic matrix factorization model, named Dynamic Bayesian Logistic Matrix Factorization (DBLMF), which aims to learn heterogeneous user and item embeddings that are drifting with inconsistent diffusion rates. More specifically, DBLMF extends logistic matrix factorization to model the probability a user would like to interact with an item at a given timestamp, and a diffusion process to connect latent embeddings over time. In addition, an efficient Bayesian inference algorithm has also been proposed to make DBLMF scalable on large datasets. The effectiveness of the proposed method has been demonstrated by extensive experiments on real datasets, compared with the state-of-the-art methods.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献