AdaBERT: Task-Adaptive BERT Compression with Differentiable Neural Architecture Search

Author:

Chen Daoyuan1,Li Yaliang1,Qiu Minghui1,Wang Zhen1,Li Bofang1,Ding Bolin1,Deng Hongbo1,Huang Jun1,Lin Wei1,Zhou Jingren1

Affiliation:

1. Alibaba Group

Abstract

Large pre-trained language models such as BERT have shown their effectiveness in various natural language processing tasks. However, the huge parameter size makes them difficult to be deployed in real-time applications that require quick inference with limited resources. Existing methods compress BERT into small models while such compression is task-independent, i.e., the same compressed BERT for all different downstream tasks. Motivated by the necessity and benefits of task-oriented BERT compression, we propose a novel compression method, AdaBERT, that leverages differentiable Neural Architecture Search to automatically compress BERT into task-adaptive small models for specific tasks. We incorporate a task-oriented knowledge distillation loss to provide search hints and an efficiency-aware loss as search constraints, which enables a good trade-off between efficiency and effectiveness for task-adaptive BERT compression. We evaluate AdaBERT on several NLP tasks, and the results demonstrate that those task-adaptive compressed models are 12.7x to 29.3x faster than BERT in inference time and 11.5x to 17.0x smaller in terms of parameter size, while comparable performance is maintained.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Edge Detection Efficiency with a Grünwald–Letnikov Fractional Network;Electronics;2024-08-20

2. Vesper: A Compact and Effective Pretrained Model for Speech Emotion Recognition;IEEE Transactions on Affective Computing;2024-07

3. Sample-Adaptive Classification Inference Network;Neural Processing Letters;2024-05-28

4. AutoMC: Automated Model Compression Based on Domain Knowledge and Progressive Search;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Greening Large Language Models of Code;Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Society;2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3