Learning Latent Forests for Medical Relation Extraction

Author:

Guo Zhijiang1,Nan Guoshun1,LU Wei1,Cohen Shay B.2

Affiliation:

1. Singapore University of Technology and Design

2. University of Edinburgh

Abstract

The goal of medical relation extraction is to detect relations among entities, such as genes, mutations and drugs in medical texts. Dependency tree structures have been proven useful for this task. Existing approaches to such relation extraction leverage off-the-shelf dependency parsers to obtain a syntactic tree or forest for the text. However, for the medical domain, low parsing accuracy may lead to error propagation downstream the relation extraction pipeline. In this work, we propose a novel model which treats the dependency structure as a latent variable and induces it from the unstructured text in an end-to-end fashion. Our model can be understood as composing task-specific dependency forests that capture non-local interactions for better relation extraction. Extensive results on four datasets show that our model is able to significantly outperform state-of-the-art systems without relying on any direct tree supervision or pre-training.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3