ISLF: Interest Shift and Latent Factors Combination Model for Session-based Recommendation

Author:

Song Jing1,Shen Hong12,Ou Zijing1,Zhang Junyi1,Xiao Teng1,Liang Shangsong1

Affiliation:

1. School of Data and Computer Science, Sun Yat-sen University, China

2. School of Computer Science, The University of Adelaide, Adelaide, Australia

Abstract

Session-based recommendation is a challenging problem due to the inherent uncertainty of user behavior and the limited historical click information. Latent factors and the complex dependencies within the user’s current session have an important impact on the user's main intention, but the existing methods do not explicitly consider this point. In this paper, we propose a novel model, Interest Shift and Latent Factors Combination Model (ISLF), which can capture the user's main intention by taking into account the user’s interest shift (i.e. long-term and short-term interest) and latent factors simultaneously. In addition, we experimentally give an explicit explanation of this combination in our ISLF. Our experimental results on three benchmark datasets show that our model achieves state-of-the-art performance on all test datasets.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Variational Autoencoders in Recommender Systems;ACM Computing Surveys;2024-06-24

2. Sequence recommendation algorithm based on cross domain user preference migration;2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC);2024-03-15

3. Stochastic shared embeddings and latent intent aware self-attention for sequential recommendation;Multimedia Tools and Applications;2024-03-01

4. Sequence-Aware Graph Neural Network Incorporating Neighborhood Information for Session-Based Recommendation;International Journal of Computational Intelligence Systems;2024-02-14

5. Session-based recommendation with fusion of hypergraph item global and context features;Knowledge and Information Systems;2024-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3