Optimality, Accuracy, and Efficiency of an Exact Functional Test

Author:

Nguyen Hien H.12,Zhong Hua13,Song Mingzhou1

Affiliation:

1. Department of Computer Science, New Mexico State University, Las Cruces, NM, USA

2. Pennsylvania State University, Harrisburg, PA, USA

3. Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Abstract

Functional dependency can lead to discoveries of new mechanisms not possible via symmetric association. Most asymmetric methods for causal direction inference are not driven by the function-versus-independence question. A recent exact functional test (EFT) was designed to detect functionally dependent patterns model-free with an exact null distribution. However, the EFT lacked a theoretical justification, had not been compared with other asymmetric methods, and was practically slow. Here, we prove the functional optimality of the EFT statistic, demonstrate its advantage in functional inference accuracy over five other methods, and develop a branch-and-bound algorithm with dynamic and quadratic programming to run at orders of magnitude faster than its previous implementation. Our results make it practical to answer the exact functional dependency question arising from discovery-driven artificial intelligence applications. Software that implements EFT is freely available in the R package 'FunChisq' (≥2.5.0) at https://cran.r-project.org/package=FunChisq

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UniExactFunTest: Uniform Exact Functional Tests for Contingency Tables;CRAN: Contributed Packages;2023-10-06

2. Joint Grid Discretization for Biological Pattern Discovery;Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics;2020-09-21

3. FunChisq: Model-Free Functional Chi-Squared and Exact Tests;CRAN: Contributed Packages;2014-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3