Content-Aware Hierarchical Point-of-Interest Embedding Model for Successive POI Recommendation

Author:

Chang Buru1,Park Yonggyu1,Park Donghyeon1,Kim Seongsoon2,Kang Jaewoo1

Affiliation:

1. Korea University

2. Naver Corporation

Abstract

Recommending a point-of-interest (POI) a user will visit next based on temporal and spatial context information is an important task in mobile-based applications. Recently, several POI recommendation models based on conventional sequential-data modeling approaches have been proposed. However, such models focus on only a user's check-in sequence information and the physical distance between POIs. Furthermore, they do not utilize the characteristics of POIs or the relationships between POIs. To address this problem, we propose CAPE, the first content-aware POI embedding model which utilizes text content that provides information about the characteristics of a POI. CAPE consists of a check-in context layer and a text content layer. The check-in context layer captures the geographical influence of POIs from the check-in sequence of a user, while the text content layer captures the characteristics of POIs from the text content. To validate the efficacy of CAPE, we constructed a large-scale POI dataset. In the experimental evaluation, we show that the performance of the existing POI recommendation models can be significantly improved by simply applying CAPE to the models.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3