Affiliation:
1. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
2. R&D Center Singapore, Machine Intelligence Technology, Alibaba DAMO Academy
Abstract
We investigate the difficulty levels of questions in reading comprehension datasets such as SQuAD, and propose a new question generation setting, named Difficulty-controllable Question Generation (DQG). Taking as input a sentence in the reading comprehension paragraph and some of its text fragments (i.e., answers) that we want to ask questions about, a DQG method needs to generate questions each of which has a given text fragment as its answer, and meanwhile the generation is under the control of specified difficulty labels---the output questions should satisfy the specified difficulty as much as possible. To solve this task, we propose an end-to-end framework to generate questions of designated difficulty levels by exploring a few important intuitions. For evaluation, we prepared the first dataset of reading comprehension questions with difficulty labels. The results show that the question generated by our framework not only have better quality under the metrics like BLEU, but also comply with the specified difficulty labels.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献