Affiliation:
1. State Key Lab of ISN, School of Computer Science and Technology, Xidian University
Abstract
Multi-view clustering aims to leverage information from multiple views to improve clustering. Most previous works assumed that each view has complete data. However, in real-world datasets, it is often the case that a view may contain some missing data, resulting in the incomplete multi-view clustering problem. Previous methods for this problem have at least one of the following drawbacks: (1) employing shallow models, which cannot well handle the dependence and discrepancy among different views; (2) ignoring the hidden information of the missing data; (3) dedicated to the two-view case. To eliminate all these drawbacks, in this work we present an Adversarial Incomplete Multi-view Clustering (AIMC) method. Unlike most existing methods which only learn a new representation with existing views, AIMC seeks the common latent space of multi-view data and performs missing data inference simultaneously. In particular, the element-wise reconstruction and the generative adversarial network (GAN) are integrated to infer the missing data. They aim to capture overall structure and get a deeper semantic understanding respectively. Moreover, an aligned clustering loss is designed to obtain a better clustering structure. Experiments conducted on three datasets show that AIMC performs well and outperforms baseline methods.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献