On the Convergence Properties of a K-step Averaging Stochastic Gradient Descent Algorithm for Nonconvex Optimization

Author:

Zhou Fan1,Cong Guojing2

Affiliation:

1. Georgia Institute of Technology

2. IBM Thomas J. Watson Research Center

Abstract

We adopt and analyze a synchronous K-step averaging stochastic gradient descent algorithm which we call K-AVG  for solving large scale machine learning problems. We establish the convergence results of K-AVG for nonconvex objectives. Our analysis of K-AVG applies to many existing variants of synchronous SGD.  We explain why the K-step delay is necessary and leads to better performance than traditional parallel stochastic gradient descent which is equivalent to K-AVG with $K=1$. We also show that K-AVG scales better with the number of learners than asynchronous stochastic gradient descent (ASGD). Another advantage of K-AVG over ASGD is that it allows larger stepsizes and facilitates faster convergence. On a cluster of $128$ GPUs, K-AVG is faster than ASGD implementations and achieves better accuracies and faster convergence for training with the CIFAR-10 dataset.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Softmax Aggregation on Blockchain based Federated Learning with Convergence Guarantee;2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS);2024-07-29

2. Over-the-Air Federated Learning and Optimization;IEEE Internet of Things Journal;2024-05-15

3. Functional link hybrid artificial neural network for predicting continuous biohydrogen production in dynamic membrane bioreactor;Bioresource Technology;2024-04

4. Differentially Private Federated Learning With an Adaptive Noise Mechanism;IEEE Transactions on Information Forensics and Security;2024

5. Communication Optimization Algorithms for Distributed Deep Learning Systems: A Survey;IEEE Transactions on Parallel and Distributed Systems;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3