Localized Incomplete Multiple Kernel k-means

Author:

Zhu Xinzhong12,Liu Xinwang3,Li Miaomiao3,Zhu En3,Liu Li45,Cai Zhiping3,Yin Jianping6,Gao Wen7

Affiliation:

1. College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, China

2. School of Electronic Engineering, XIDIAN University, Xi'an, Shanxi, China

3. School of Computer, National University of Defense Technology, Changsha, China

4. College of System Engineering, National University of Defense Technology, Changsha, China

5. University of Oulu, Finland

6. Dongguan University of Technology, Guangdong, China

7. School of Electronics Engineering and Computer Science, Peking University, Beijing, China

Abstract

The recently proposed multiple kernel k-means with incomplete kernels (MKKM-IK) optimally integrates a group of pre-specified incomplete kernel matrices to improve clustering performance. Though it demonstrates promising performance in various applications, we observe that it does not \emph{sufficiently  consider the local structure among data and indiscriminately forces all pairwise sample similarity to equally align with their ideal similarity values}. This could make the incomplete kernels less effectively imputed, and in turn adversely affect the clustering performance. In this paper, we propose a novel localized incomplete multiple kernel k-means (LI-MKKM) algorithm to address this issue. Different from existing MKKM-IK, LI-MKKM only requires the similarity of a sample to its k-nearest neighbors to align with their ideal similarity values. This helps the clustering algorithm to focus on closer sample pairs that shall stay together and avoids involving unreliable similarity evaluation for farther sample pairs. We carefully design a three-step iterative algorithm to solve the resultant optimization problem and theoretically prove its convergence. Comprehensive experiments on eight benchmark datasets demonstrate that our algorithm significantly outperforms the state-of-the-art comparable algorithms proposed in the recent literature, verifying the advantage of considering local structure.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3