INITIATOR: Noise-contrastive Estimation for Marked Temporal Point Process

Author:

Guo Ruocheng1,Li Jundong1,Liu Huan1

Affiliation:

1. Computer Science and Engineering, Arizona State University, USA

Abstract

Copious sequential event data has consistently increased in various high-impact domains such as social media and sharing economy. When events start to take place in a sequential fashion, an important question arises: "what type of event will happen at what time in the near future?" To answer the question, a class of mathematical models called the marked temporal point process is often exploited as it can model the timing and properties of events seamlessly in a joint framework. Recently, various recurrent neural network (RNN) models are proposed to enhance the predictive power of mark temporal point process. However, existing marked temporal point models are fundamentally based on the Maximum Likelihood Estimation (MLE) framework for the training, and inevitably suffer from the problem resulted from the intractable likelihood function. Surprisingly, little attention has been paid to address this issue. In this work, we propose INITIATOR - a novel training framework based on noise-contrastive estimation to resolve this problem. Theoretically, we show the exists a strong connection between the proposed INITIATOR and the exact MLE. Experimentally, the efficacy of INITIATOR is demonstrated over the state-of-the-art approaches on several real-world datasets from various areas.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distribution-free conformal joint prediction regions for neural marked temporal point processes;Machine Learning;2024-07-23

2. Modelling event sequence data by type-wise neural point process;Data Mining and Knowledge Discovery;2024-06-17

3. Iterative convolutional enhancing self-attention Hawkes process with time relative position encoding;International Journal of Machine Learning and Cybernetics;2023-02-04

4. Towards An Integrated Framework for Neural Temporal Point Process;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18

5. A Survey of Learning Causality with Data;ACM Computing Surveys;2021-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3