Affiliation:
1. Ping An Technology
2. University of Science and Technology of China
3. Ping An Insurance (Group) Company of China
Abstract
Due to the improvement of Language Modeling, the emerging NLP assistant tools aiming for text generation greatly reduce the human workload on writing documents. However, the generation of legal text faces greater challenges than ordinary texts because of its high requirement for keeping logic reasonable, which can not be guaranteed by Language Modeling right now. To generate reasonable legal documents, we propose a novel method CoLMQA, which (1) combines Language Modeling and Question Answering, (2) generates text with slots by Language Modeling, and (3) fills the slots by our proposed Question Answering method named Transformer-based Key-Value Memory Networks. In CoLMQA, the slots represent the text part that needs to be highly constrained by logic, such as the name of the law and the number of the law article. And the Question Answering fills the slots in context with the help of Legal Knowledge Base to keep logic reasonable. The experiment verifies the quality of legal documents generated by CoLMQA, surpassing the documents generated by pure Language Modeling.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献