Deep Polarized Network for Supervised Learning of Accurate Binary Hashing Codes

Author:

Fan Lixin1,Ng Kam Woh1,Ju Ce1,Zhang Tianyu1,Chan Chee Seng2

Affiliation:

1. Webank AI

2. University of Malaya

Abstract

This paper proposes a novel deep polarized network (DPN) for learning to hash, in which each channel in the network outputs is pushed far away from zero by employing a differentiable bit-wise hinge-like loss which is dubbed as polarization loss. Reformulated within a generic Hamming Distance Metric Learning framework [Norouzi et al., 2012], the proposed polarization loss bypasses the requirement to prepare pairwise labels for (dis-)similar items and, yet, the proposed loss strictly bounds from above the pairwise Hamming Distance based losses. The intrinsic connection between pairwise and pointwise label information, as disclosed in this paper, brings about the following methodological improvements: (a) we may directly employ the proposed differentiable polarization loss with no large deviations incurred from the target Hamming distance based loss; and (b) the subtask of assigning binary codes becomes extremely simple --- even random codes assigned to each class suffice to result in state-of-the-art performances, as demonstrated in CIFAR10, NUS-WIDE and ImageNet100 datasets.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DJUHNet: A deep representation learning-based scheme for the task of joint image upsampling and hashing;Signal Processing: Image Communication;2024-11

2. Deep Hashing for Malware Family Classification and New Malware Identification;IEEE Internet of Things Journal;2024-08-15

3. Deep Attention Fusion Hashing (DAFH) Model for Medical Image Retrieval;Bioengineering;2024-07-02

4. Multi-Proxy Deep Hashing for Image Retrieval;Proceedings of 2024 ACM ICMR Workshop on Multimodal Video Retrieval;2024-06-10

5. Hashing Orthogonal Constraint Loss for Multi-Label Image Retrieval;Proceedings of 2024 ACM ICMR Workshop on Multimodal Video Retrieval;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3