Exploring Parameter Space with Structured Noise for Meta-Reinforcement Learning

Author:

Xu Hui1,Zhang Chong2,Wang Jiaxing34,Ouyang Deqiang1,Zheng Yu2,Shao Jie15

Affiliation:

1. University of Electronic Science and Technology of China

2. Tencent Robotics X

3. Institute of Automation, Chinese Academy of Sciences

4. University of Chinese Academy of Sciences

5. Sichuan Artificial Intelligence Research Institute

Abstract

Efficient exploration is a major challenge in Reinforcement Learning (RL) and has been studied extensively. However, for a new task existing methods explore either by taking actions that maximize task agnostic objectives (such as information gain) or applying a simple dithering strategy (such as noise injection), which might not be effective enough. In this paper, we investigate whether previous learning experiences can be leveraged to guide exploration of current new task. To this end, we propose a novel Exploration with Structured Noise in Parameter Space (ESNPS) approach. ESNPS utilizes meta-learning and directly uses meta-policy parameters, which contain prior knowledge, as structured noises to perturb the base model for effective exploration in new tasks. Experimental results on four groups of tasks: cheetah velocity, cheetah direction, ant velocity and ant direction demonstrate the superiority of ESNPS against a number of competitive baselines.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3