Semi-Supervised Optimal Transport for Heterogeneous Domain Adaptation

Author:

Yan Yuguang1,Li Wen2,Wu Hanrui1,Min Huaqing1,Tan Mingkui1,Wu Qingyao1

Affiliation:

1. School of Software Engineering, South China University of Technology

2. Computer Vision Laboratory, ETH Zurich, Switzerland

Abstract

Heterogeneous domain adaptation (HDA) aims to exploit knowledge from a heterogeneous source domain to improve the learning performance in a target domain. Since the feature spaces of the source and target domains are different, the transferring of knowledge is extremely difficult. In this paper, we propose a novel semi-supervised algorithm for HDA by exploiting the theory of optimal transport (OT), a powerful tool originally designed for aligning two different distributions. To match the samples between heterogeneous domains, we propose to preserve the semantic consistency between heterogeneous domains by incorporating label information into the entropic Gromov-Wasserstein discrepancy, which is a metric in OT for different metric spaces, resulting in a new semi-supervised scheme. Via the new scheme, the target and transported source samples with the same label are enforced to follow similar distributions. Lastly, based on the Kullback-Leibler metric, we develop an efficient algorithm to optimize the resultant problem. Comprehensive experiments on both synthetic and real-world datasets demonstrate the effectiveness of our proposed method.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3