Affiliation:
1. National Key Laboratory for Novel Software Technology, Nanjing University, China
2. MOE Key Laboratory of Computer Network and Information Integration, Southeast University, China
Abstract
Age estimation performance has been greatly improved by using convolutional neural network. However, existing methods have an inconsistency between the training objectives and evaluation metric, so they may be suboptimal. In addition, these methods always adopt image classification or face recognition models with a large amount of parameters, which bring expensive computation cost and storage overhead. To alleviate these issues, we design a lightweight network architecture and propose a unified framework which can jointly learn age distribution and regress age. The effectiveness of our approach has been demonstrated on apparent and real age estimation tasks. Our method achieves new state-of-the-art results using the single model with 36$\times$ fewer parameters and 2.6$\times$ reduction in inference time. Moreover, our method can achieve comparable results as the state-of-the-art even though model parameters are further reduced to 0.9M~(3.8MB disk storage). We also analyze that Ranking methods are implicitly learning label distributions.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献