Affiliation:
1. National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
Abstract
Reinforcement learning is a major tool to realize intelligent agents that can be autonomously adaptive to the environment. With deep models, reinforcement learning has shown great potential in complex tasks such as playing games from pixels. However, current reinforcement learning techniques are still suffer from requiring a huge amount of interaction data, which could result in unbearable cost in real-world applications. In this article, we share our understanding of the problem, and discuss possible ways to alleviate the sample cost of reinforcement learning, from the aspects of exploration, optimization, environment modeling, experience transfer, and abstraction. We also discuss some challenges in real-world applications, with the hope of inspiring future researches.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献