Towards Sample Efficient Reinforcement Learning

Author:

Yu Yang1

Affiliation:

1. National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Abstract

Reinforcement learning is a major tool to realize intelligent agents that can be autonomously adaptive to the environment. With deep models, reinforcement learning has shown great potential in complex tasks such as playing games from pixels. However, current reinforcement learning techniques are still suffer from requiring a huge amount of interaction data, which could result in unbearable cost in real-world applications. In this article, we share our understanding of the problem, and discuss possible ways to alleviate the sample cost of reinforcement learning, from the aspects of exploration, optimization, environment modeling, experience transfer, and abstraction. We also discuss some challenges in real-world applications, with the hope of inspiring future researches.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3