Improving Inductive Link Prediction Using Hyper-Relational Facts (Extended Abstract)

Author:

Ali Mehdi1,Berrendorf Max2,Galkin Mikhail3,Thost Veronika4,Ma Tengfei4,Tresp Volker5,Lehmann Jens1

Affiliation:

1. Fraunhofer IAIS, Smart Data Analytics Group, University of Bonn

2. Ludwig-Maximilians-Universität München

3. Mila, McGill University

4. IBM Research

5. Siemens, Ludwig-Maximilians-Universität München

Abstract

For many years, link prediction on knowledge. graphs has been a purely transductive task, not allowing for reasoning on unseen entities. Recently, increasing efforts are put into exploring semi- and fully inductive scenarios, enabling inference over unseen and emerging entities. Still, all these approaches only consider triple-based KGs, whereas their richer counterparts, hyper-relational KGs (e.g., Wikidata), have not yet been properly studied. In this work, we classify different inductive settings and study the benefits of employing hyper-relational KGs on a wide range of semi- and fully inductive link prediction tasks powered by recent advancements in graph neural networks. Our experiments on a novel set of benchmarks show that qualifiers over typed edges can lead to performance improvements of 6% of absolute gains (for the Hits@10 metric) compared to triple-only baselines. Our code is available at https://github.com/mali-git/hyper_relational_ilp.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Model Calibration to Evaluate Link Prediction in Knowledge Graphs;Proceedings of the ACM Web Conference 2024;2024-05-13

2. RAILD: Towards Leveraging Relation Features for Inductive Link Prediction In Knowledge Graphs;Proceedings of the 11th International Joint Conference on Knowledge Graphs;2022-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3