Affiliation:
1. Beijing University of Posts and Telecommunications
Abstract
Traditional recommendation usually focuses on utilizing only one target user behavior (e.g., purchase) but ignoring other auxiliary behaviors (e.g., click, add to cart). Early efforts of multi-behavior recommendation often emphasize the differences between multiple behaviors, i.e., they aim to extract useful information by distinguishing different behaviors. However, the commonality between them, which reflects user's common preference for items associated with different behaviors, is largely ignored. Meanwhile, the multi-behavior recommendation still severely suffers from limited supervision signal issue. In this paper, we propose a novel self-supervised graph collaborative filtering model for multi-behavior recommendation named S-MBRec. Specifically, for each behavior, we execute the GCNs to learn the user and item embeddings. Then we design a supervised task, distinguishing the importance of different behaviors, to capture the differences between embeddings. Meanwhile, we propose a star-style contrastive learning task to capture the embedding commonality between target and auxiliary behaviors, so as to alleviate the sparsity of supervision signal, reduce the redundancy among auxiliary behavior, and extract the most critical information. Finally, we jointly optimize the above two tasks. Extensive experiments, in comparison with state-of-the-arts, well demonstrate the effectiveness of S-MBRec, where the maximum improvement can reach to 20%.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献