Bi-level Dynamic Learning for Jointly Multi-modality Image Fusion and Beyond

Author:

Liu Zhu1,Liu Jinyuan1,Wu Guanyao1,Ma Long1,Fan Xin1,Liu Risheng1

Affiliation:

1. Dalian University of Technology

Abstract

Recently, multi-modality scene perception tasks, e.g., image fusion and scene understanding, have attracted widespread attention for intelligent vision systems. However, early efforts always consider boosting a single task unilaterally and neglecting others, seldom investigating their underlying connections for joint promotion. To overcome these limitations, we establish the hierarchical dual tasks-driven deep model to bridge these tasks. Concretely, we firstly construct an image fusion module to fuse complementary characteristics and cascade dual task-related modules, including a discriminator for visual effects and a semantic network for feature measurement. We provide a bi-level perspective to formulate image fusion and follow-up downstream tasks. To incorporate distinct task-related responses for image fusion, we consider image fusion as a primary goal and dual modules as learnable constraints. Furthermore, we develop an efficient first-order approximation to compute corresponding gradients and present dynamic weighted aggregation to balance the gradients for fusion learning. Extensive experiments demonstrate the superiority of our method, which not only produces visually pleasant fused results but also realizes significant promotion for detection and segmentation than the state-of-the-art approaches.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Task-Guided, Implicitly-Searched and Meta-Initialized Deep Model for Image Fusion;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-10

2. BCMFIFuse: A Bilateral Cross-Modal Feature Interaction-Based Network for Infrared and Visible Image Fusion;Remote Sensing;2024-08-25

3. Searching a Compact Architecture for Robust Multi-Exposure Image Fusion;IEEE Transactions on Circuits and Systems for Video Technology;2024-07

4. Local Contrast Prior-Guided Cross Aggregation Model for Effective Infrared Small Target Detection;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

5. Navigating Uncertainty: Semantic-Powered Image Enhancement and Fusion;IEEE Signal Processing Letters;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3