Affiliation:
1. School of Computer Science and Engineering
2. Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly
3. Interdisciplinary Graduate School
4. Nanyang Technological University, Singapore
Abstract
Feature-engineering-based machine learning models and deep learning models have been explored for wearable-sensor-based human activity recognition. For both types of methods, one crucial research issue is how to extract proper features from the partitioned segments of multivariate sensor readings. Existing methods have different drawbacks: 1) feature-engineering-based methods are able to extract meaningful features, such as statistical or structural information underlying the segments, but usually require manual designs of features for different applications, which is time consuming, and 2) deep learning models are able to learn temporal and/or spatial features from the sensor data automatically, but fail to capture statistical information. In this paper, we propose a novel deep learning model to automatically learn meaningful features including statistical features, temporal features and spatial correlation features for activity recognition in a unified framework. Extensive experiments are conducted on four datasets to demonstrate the effectiveness of our proposed method compared with state-of-the-art baselines.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献