Affiliation:
1. The University of Hong Kong
2. Shanghai University of Finance and Economics
Abstract
Leveraging lexical constraint is extremely significant in domain-specific machine translation and interactive machine translation. Previous studies mainly focus on extending beam search algorithm or augmenting the training corpus by replacing source phrases with the corresponding target translation. These methods either suffer from the heavy computation cost during inference or depend on the quality of the bilingual dictionary pre-specified by user or constructed with statistical machine translation. In response to these problems, we present a conceptually simple and empirically effective data augmentation approach in lexical constrained neural machine translation. Specifically, we make constraint-aware training data by first randomly sampling the phrases of the reference as constraints, and then packing them together into the source sentence with a separation symbol. Extensive experiments on several language pairs demonstrate that our approach achieves superior translation results over the existing systems, improving translation of constrained sentences without hurting the unconstrained ones.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献