Affiliation:
1. Harbin Institute of Technology
Abstract
Distant supervised relation extraction (RE) has been an effective way of finding novel relational facts from text without labeled training data. Typically it can be formalized as a multi-instance multi-label problem.In this paper, we introduce a novel neural approach for distant supervised (RE) with specific focus on attention mechanisms.Unlike the feature-based logistic regression model and compositional neural models such as CNN, our approach includes two major attention-based memory components, which is capable of explicitly capturing the importance of each context word for modeling the representation of the entity pair, as well as the intrinsic dependencies between relations.Such importance degree and dependency relationship are calculated with multiple computational layers, each of which is a neural attention model over an external memory. Experiment on real-world datasets shows that our approach performs significantly and consistently better than various baselines.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献