Graph-Free Knowledge Distillation for Graph Neural Networks

Author:

Deng Xiang1,Zhang Zhongfei1

Affiliation:

1. State University of New York at Binghamton

Abstract

Knowledge distillation (KD) transfers knowledge from a teacher network to a student by enforcing the student to mimic the outputs of the pretrained teacher on training data. However, data samples are not always accessible in many cases due to large data sizes, privacy, or confidentiality. Many efforts have been made on addressing this problem for convolutional neural networks (CNNs) whose inputs lie in a grid domain within a continuous space such as images and videos, but largely overlook graph neural networks (GNNs) that handle non-grid data with different topology structures within a discrete space. The inherent differences between their inputs make these CNN-based approaches not applicable to GNNs. In this paper, we propose to our best knowledge the first dedicated approach to distilling knowledge from a GNN without graph data. The proposed graph-free KD (GFKD) learns graph topology structures for knowledge transfer by modeling them with multinomial distribution. We then introduce a gradient estimator to optimize this framework. Essentially, the gradients w.r.t. graph structures are obtained by only using GNN forward-propagation without back-propagation, which means that GFKD is compatible with modern GNN libraries such as DGL and Geometric. Moreover, we provide the strategies for handling different types of prior knowledge in the graph data or the GNNs. Extensive experiments demonstrate that GFKD achieves the state-of-the-art performance for distilling knowledge from GNNs without training data.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3