Improving Cross-lingual Entity Alignment via Optimal Transport

Author:

Pei Shichao12,Yu Lu12,Zhang Xiangliang12

Affiliation:

1. The Computer, Electrical and Mathematical Sciences and Engineering Division.

2. King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, SA

Abstract

Cross-lingual entity alignment identifies entity pairs that share the same meanings but locate in different language knowledge graphs (KGs). The study in this paper is to address two limitations that widely exist in current solutions:  1) the alignment loss functions defined at the entity level serve well the purpose of aligning labeled entities but fail to match the whole picture of labeled and unlabeled entities in different KGs;  2) the translation from one domain to the other has been considered (e.g., X to Y by M1 or Y to X by M2). However, the important duality of alignment between different KGs  (X to Y by M1 and Y to X by M2) is ignored. We propose a novel entity alignment framework (OTEA), which dually optimizes the entity-level loss and group-level loss via optimal transport theory. We also impose a regularizer on the dual translation matrices to mitigate the effect of noise during transformation. Extensive experimental results show that our model consistently outperforms the state-of-the-arts with significant improvements on alignment accuracy.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SARA: Semantic-assisted Reinforced Active Learning for Entity Alignment;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Dynamic personalized graph neural network with linear complexity for multivariate time series forecasting;Engineering Applications of Artificial Intelligence;2024-01

3. SMAAMA: A named entity alignment method based on Siamese network character feature and multi-attribute importance feature for Chinese civil aviation;Journal of King Saud University - Computer and Information Sciences;2023-12

4. Matching Knowledge Graphs in Entity Embedding Spaces: An Experimental Study;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

5. A relation enhanced model for temporal knowledge graph alignment;The Journal of Supercomputing;2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3