Reinforced Self-Attention Network: a Hybrid of Hard and Soft Attention for Sequence Modeling

Author:

Shen Tao1,Zhou Tianyi2,Long Guodong1,Jiang Jing1,Wang Sen3,Zhang Chengqi1

Affiliation:

1. Centre for Artificial Intelligence, School of Software, University of Technology Sydney

2. Paul G. Allen School of Computer Science & Engineering, University of Washington

3. School of Information and Communication Technology, Griffith University

Abstract

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA.  It achieves state-of-the-art performance on both the Stanford Natural Language Inference (SNLI) and the Sentences Involving Compositional Knowledge (SICK) datasets. 

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformers in source code generation: A comprehensive survey;Journal of Systems Architecture;2024-08

2. Visual attention methods in deep learning: An in-depth survey;Information Fusion;2024-08

3. Creativity Modules;Connecting Creativity and Motivation Research with End Users;2024-02-15

4. Interpreting Decision of Self-Attention Network’s in the Context of Image Recognition by Efficiently Utilizing Attention Scores;2023 6th International Conference on Electrical Information and Communication Technology (EICT);2023-12-07

5. Unsupervised Domain Adaptation on Sentence Matching Through Self-Supervision;Journal of Computer Science and Technology;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3