Self-paced Convolutional Neural Networks

Author:

Li Hao1,Gong Maoguo1

Affiliation:

1. Xidian University, Xi'an, China

Abstract

Convolutional neural networks (CNNs) have achieved breakthrough performance in many pattern recognition tasks. In order to distinguish the reliable data from the noisy and confusing data, we improve CNNs with self-paced learning (SPL) for enhancing the learning robustness of CNNs. In the proposed self-paced convolutional network (SPCN), each sample is assigned to a weight to reflect the easiness of the sample. Then a dynamic self-paced function is incorporated into the leaning objective of CNN to jointly learn the parameters of CNN and the latent weight variable. SPCN learns the samples from easy to complex and the sample weights can dynamically control the learning rates for converging to better values. To gain more insights of SPCN, theoretical studies are conducted to show that SPCN converges to a stationary solution and is robust to the noisy and confusing data. Experimental results on MNIST and rectangles datasets demonstrate that the proposed method outperforms baseline methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A class-aware multi-stage UDA framework for prostate zonal segmentation;Multimedia Tools and Applications;2024-01-18

2. Self-Paced Neutral Expression-Disentangled Learning for Facial Expression Recognition;2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT);2023-11-10

3. Classwise Self-Paced Self-Training for Semi-Supervised Image Classification;2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2023-10-31

4. Exploiting task relationships for Alzheimer’s disease cognitive score prediction via multi-task learning;Computers in Biology and Medicine;2023-01

5. Withdrawals Prediction in Virtual Learning Environments with Deep Self-paced Learning;Computer Science and Education;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3