Affiliation:
1. Southwestern University of Finance and Economics
2. University of Electronic Science and Technology of China
3. Iowa State University
Abstract
Typically, trajectories considered anomalous are the ones deviating from usual (e.g., traffic-dictated) driving patterns. However, this closed-set context fails to recognize the unknown anomalous trajectories, resulting in an insufficient self-motivated learning paradigm. In this study, we investigate the novel Anomalous Trajectory Recognition problem in an Open-world scenario (ATRO) and introduce a novel probabilistic Metric learning model, namely ATROM, to address it. Specifically, ATROM can detect the presence of unknown anomalous behavior in addition to identifying known behavior. It has a Mutual Interaction Distillation that uses contrastive metric learning to explore the interactive semantics regarding the diverse behavioral intents and a Probabilistic Trajectory Embedding that forces the trajectories with distinct behaviors to follow different Gaussian priors. More importantly, ATROM offers a probabilistic metric rule to discriminate between known and unknown behavioral patterns by taking advantage of the approximation of multiple priors. Experimental results on two large-scale trajectory datasets demonstrate the superiority of ATROM in addressing both known and unknown anomalous patterns.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-Scale Detection of Anomalous Spatio-Temporal Trajectories in Evolving Trajectory Datasets;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24