HDFormer: High-order Directed Transformer for 3D Human Pose Estimation

Author:

Chen Hanyuan1,He Jun-Yan1,Xiang Wangmeng1,Cheng Zhi-Qi2,Liu Wei1,Liu Hanbing3,Luo Bin1,Geng Yifeng1,Xie Xuansong1

Affiliation:

1. Alibaba Group

2. Carnegie Mellon University

3. Tsinghua University

Abstract

Human pose estimation is a challenging task due to its structured data sequence nature. Existing methods primarily focus on pair-wise interaction of body joints, which is insufficient for scenarios involving overlapping joints and rapidly changing poses. To overcome these issues, we introduce a novel approach, the High-order Directed Transformer (HDFormer), which leverages high-order bone and joint relationships for improved pose estimation. Specifically, HDFormer incorporates both self-attention and high-order attention to formulate a multi-order attention module. This module facilitates first-order "joint-joint", second-order "bone-joint", and high-order "hyperbone-joint" interactions, effectively addressing issues in complex and occlusion-heavy situations. In addition, modern CNN techniques are integrated into the transformer-based architecture, balancing the trade-off between performance and efficiency. HDFormer significantly outperforms state-of-the-art (SOTA) models on Human3.6M and MPI-INF-3DHP datasets, requiring only 1/10 of the parameters and significantly lower computational costs. Moreover, HDFormer demonstrates broad real-world applicability, enabling real-time, accurate 3D pose estimation. The source code is in https://github.com/hyer/HDFormer.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-Object-Object Interaction: Towards Human-Centric Complex Interaction Detection;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3