Constraint Programming for Mining Borders of Frequent Itemsets

Author:

Belaid Mohamed-Bachir1,Bessiere Christian1,Lazaar Nadjib1

Affiliation:

1. LIRMM, University of Montpellier, CNRS, Montpellier, France

Abstract

Frequent itemset mining is one of the most studied tasks in knowledge discovery. It is often reduced to mining the positive border of frequent itemsets, i.e. maximal frequent itemsets. Infrequent itemset mining, on the other hand, can be reduced to mining the negative border, i.e. minimal infrequent itemsets. We propose a generic framework based on constraint programming to mine both borders of frequent itemsets.One can easily decide which border to mine by setting a simple parameter. For this, we introduce two new global constraints, FREQUENTSUBS and INFREQUENTSUPERS, with complete polynomial propagators. We then consider the problem of mining borders with additional constraints. We prove that this problem is coNP-hard, ruling out the hope for the existence of a single CSP solving this problem (unless coNP ⊆ NP).

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Java Library for Itemset Mining with Choco-solver;Journal of Open Source Software;2023-08-18

2. Towards a Compact SAT-Based Encoding of Itemset Mining Tasks;Integration of Constraint Programming, Artificial Intelligence, and Operations Research;2021

3. A Relaxation-Based Approach for Mining Diverse Closed Patterns;Machine Learning and Knowledge Discovery in Databases;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3