Pairwise-Ranking based Collaborative Recurrent Neural Networks for Clinical Event Prediction

Author:

Qiao Zhi1,Zhao Shiwan1,Xiao Cao2,Li Xiang1,Qin Yong1,Wang Fei3

Affiliation:

1. IBM Research - China, Beijing, China

2. IBM Research, Cambridge, MA, 02142

3. Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, New York, NY 10065

Abstract

Patient Electronic Health Records (EHR) data consist of sequences of patient visits over time. Sequential prediction of patients' future clinical events (e.g., diagnoses) from their historical EHR data is a core research task and motives a series of predictive models including deep learning. The existing research mainly adopts a classification framework, which treats the observed and unobserved events as positive and negative classes. However, this may not be true in real clinical setting considering the high rate of missed diagnoses and human errors. In this paper, we propose to formulate the clinical event prediction problem as an events recommendation problem. An end-to-end pairwise-ranking based collaborative recurrent neural networks (PacRNN) is proposed to solve it, which firstly embeds patient clinical contexts with attention RNN, then uses Bayesian Personalized Ranking (BPR) regularized by disease co-occurrence to rank probabilities of patient-specific diseases, as well as use point process to provide simultaneous prediction of the occurring time of these diagnoses. Experimental results on two real world EHR datasets demonstrate the robust performance, interpretability, and efficacy of PacRNN.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3