Deterministic Routing between Layout Abstractions for Multi-Scale Classification of Visually Rich Documents

Author:

Sarkhel Ritesh1,Nandi Arnab1

Affiliation:

1. Department of Computer Science and Engineering, The Ohio State University

Abstract

Classifying heterogeneous visually rich documents is a challenging task. Difficulty of this task increases even more if the maximum allowed inference turnaround time is constrained by a threshold. The increased overhead in inference cost, compared to the limited gain in classification capabilities make current multi-scale approaches infeasible in such scenarios. There are two major contributions of this work. First, we propose a spatial pyramid model to extract highly discriminative multi-scale feature descriptors from a visually rich document by leveraging the inherent hierarchy of its layout. Second, we propose a deterministic routing scheme for accelerating end-to-end inference by utilizing the spatial pyramid model. A depth-wise separable multi-column convolutional network is developed to enable our method. We evaluated the proposed approach on four publicly available, benchmark datasets of visually rich documents. Results suggest that our proposed approach demonstrates robust performance compared to the state-of-the-art methods in both classification accuracy and total inference turnaround.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DocXclassifier: towards a robust and interpretable deep neural network for document image classification;International Journal on Document Analysis and Recognition (IJDAR);2024-06-25

2. DWT-CompCNN: deep image classification network for high throughput JPEG 2000 compressed documents;Pattern Analysis and Applications;2023-08-02

3. Document Image Analysis Using Deep Multi-modular Features;SN Computer Science;2022-10-15

4. mmLayout: Multi-grained MultiModal Transformer for Document Understanding;Proceedings of the 30th ACM International Conference on Multimedia;2022-10-10

5. DiT: Self-supervised Pre-training for Document Image Transformer;Proceedings of the 30th ACM International Conference on Multimedia;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3