Affiliation:
1. Rochester Institute of Technology
Abstract
Diagnostic error prevention is a long-established but specialized topic in clinical and psychological research. In this paper, we contribute to the field by exploring diagnostic decision-making via modeling physicians' utterances of medical concepts during image-based diagnoses. We conduct experiments to collect verbal narratives from dermatologists while they are examining and describing dermatology images towards diagnoses. We propose a hierarchical probabilistic framework to learn domain-specific patterns from the medical concepts in these narratives. The discovered patterns match the diagnostic units of thought identified by domain experts. These meaningful patterns uncover physicians' diagnostic decision-making processes while parsing the image content. Our evaluation shows that these patterns provide key information to classify narratives by diagnostic correctness levels.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献